LeetCode刷题指南
第 0 章 hot100
0.1 哈希
0.2 双指针
0.3 滑动窗口
0.4 子串
0.5 普通数组
0.6 矩阵
0.7 链表
0.8 二叉树
0.9 图论
0.10 回溯
0.11 二分查找
0.12 栈
0.13 堆
0.14 贪心算法
0.15 动态规划
0.16 多维动态规划
0.17 技巧
第0-1章 面试经典150
0.1 数组/字符串
0.2 双指针
0.3 滑动窗口
链表
二叉树
第 1 章 最易懂的贪心算法
1.1 算法解释
1.2 分配问题
1.3 区间问题
1.4 练习
第 2 章 玩转双指针
2.1 算法解释
2.2 Two Sum
2.3 归并两个有序数组
2.4 滑动窗口
2.5 快慢指针
2.6 练习
第 3 章 居合斩!二分查找
3.1 算法解释
3.2 求开方
3.3 查找区间
3.4 查找峰值
3.5 旋转数组查找数字
3.6 练习
第 4 章 千奇百怪的排序算法
4.1 常用排序算法
4.2 快速选择
4.3 桶排序
4.4 练习
第 5 章 一切皆可搜索
5.1 算法解释
5.2 深度优先搜索
5.3 回溯法
5.4 广度优先搜索
5.5 练习
第 6 章 深入浅出动态规划
6.1 算法解释
6.2 基本动态规划:一维
6.3 基本动态规划:二维
6.4 分割类型题
6.5 子序列问题
6.6 背包问题
6.7 字符串编辑
6.8 股票交易
6.9 练习
第 7 章 化繁为简的分治法
7.1 算法解释
7.2 表达式问题
7.3 练习
第 8 章 巧解数学问题
8.1 引言
8.2 公倍数与公因数
8.3 质数
8.4 数字处理
8.5 随机与取样
8.6 练习
第 9 章 神奇的位运算
9.1 常用技巧
9.2 位运算基础问题
9.3 二进制特性
9.4 练习
第 10 章 妙用数据结构
10.1 C++ STL
10.2 Python 常用数据结构
10.3 数组
10.4 栈和队列
10.5 单调栈
10.6 优先队列
10.7 双端队列
10.8 哈希表
10.9 多重集合和映射
10.10 前缀和与积分图
10.11 练习
第 11 章 令人头大的字符串
11.1 引言
11.2 字符串比较
11.3 字符串理解
11.4 字符串匹配
11.5 练习
第 12 章 指针三剑客之一:链表
12.1 数据结构介绍
12.2 链表的基本操作
12.3 其它链表技巧
12.4 练习
第 13 章 指针三剑客之二:树
13.1 数据结构介绍
13.2 树的递归
13.3 层次遍历
13.4 前中后序遍历
13.5 二叉查找树
13.6 字典树
13.7 练习
第 14 章 指针三剑客之三:图
14.1 数据结构介绍
14.2 二分图
14.3 拓扑排序
14.4 练习
第 15 章 更加复杂的数据结构
15.1 引言
15.2 并查集
15.3 复合数据结构
15.4 练习
第16章 面试题
第 17 章 十大经典排序算法
README
本文档使用 MrDoc 发布
-
+
首页
6.7 字符串编辑
# 6.7 字符串编辑 ## [72. Edit Distance](https://leetcode.com/problems/edit-distance/) ### 题目描述 给定两个字符串,已知你可以删除、替换和插入任意字符串的任意字符,求最少编辑几步可以将两个字符串变成相同。 ### 输入输出样例 输入是两个字符串,输出是一个整数,表示最少的步骤。 ``` Input: word1 = "horse", word2 = "ros" Output: 3 ``` 在这个样例中,一种最优编辑方法是 horse -> rorse -> rose -> ros。 ### 题解 类似于题目 1143,我们使用一个二维数组 dp[i][j],表示将第一个字符串到位置 i 为止,和第二个字符串到位置 j 为止,最多需要几步编辑。当第 i 位和第 j 位对应的字符相同时,dp[i][j] 等于 dp[i-1][j-1];当二者对应的字符不同时,修改的消耗是 dp[i-1][j-1]+1,插入 i 位置/删除 j 位置的消耗是 dp[i][j-1] + 1,插入 j 位置/删除 i 位置的消耗是 dp[i-1][j] + 1。 ```py class Solution: def minDistance(self, word1: str, word2: str) -> int: m, n = len(word1), len(word2) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): for j in range(n + 1): if i == 0 or j == 0: dp[i][j] = i + j else: dp[i][j] = min( dp[i - 1][j - 1] + int(word1[i - 1] != word2[j - 1]), dp[i][j - 1] + 1, dp[i - 1][j] + 1, ) return dp[m][n] ``` ## [650. 2 Keys Keyboard](https://leetcode.com/problems/2-keys-keyboard/) ### 题目描述 给定一个字母 A,已知你可以每次选择复制全部字符,或者粘贴之前复制的字符,求最少需要几次操作可以把字符串延展到指定长度。 ### 输入输出样例 输入是一个正整数,代表指定长度;输出是一个整数,表示最少操作次数。 ``` Input: 3 Output: 3 ``` 在这个样例中,一种最优的操作方法是先复制一次,再粘贴两次。 ### 题解 dp[i]表示的是得到i个A所需要的最小次数 接下来就是循环,如果 i%j==0 :说明i个A可以由m个j得到 那么接下来就是需要1次copy,以及 $$(i//j)-1$$ 次paste 表达式为 $$dp[i]=min(dp[i],dp[j]+1+i//j−1)$$ 即为 $$dp[i]=min(dp[i],dp[j]+i//j)$$ ```py class Solution: def minSteps(self, n: int) -> int: dp = [inf] * (n + 1) dp[1] = 0 for i in range(2, n + 1): for j in range(1, i): if i % j == 0: dp[i] = min(dp[i], dp[j] + i // j) return dp[n] ```
嘉心糖糖
2025年3月20日 17:26
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
PDF文档(打印)
分享
链接
类型
密码
更新密码